Feature Selection from a Facial Image for Distinction of Sasang Constitution
نویسندگان
چکیده
Recently, oriental medicine has received attention for providing personalized medicine through consideration of the unique nature and constitution of individual patients. With the eventual goal of globalization, the current trend in oriental medicine research is the standardization by adopting western scientific methods, which could represent a scientific revolution. The purpose of this study is to establish methods for finding statistically significant features in a facial image with respect to distinguishing constitution and to show the meaning of those features. From facial photo images, facial elements are analyzed in terms of the distance, angle and the distance ratios, for which there are 1225, 61 250 and 749 700 features, respectively. Due to the very large number of facial features, it is quite difficult to determine truly meaningful features. We suggest a process for the efficient analysis of facial features including the removal of outliers, control for missing data to guarantee data confidence and calculation of statistical significance by applying ANOVA. We show the statistical properties of selected features according to different constitutions using the nine distances, 10 angles and 10 rates of distance features that are finally established. Additionally, the Sasang constitutional meaning of the selected features is shown here.
منابع مشابه
Analysis of Sasang constitutional types using facial features with compensation for photographic distance
BACKGROUND Facial features are regarded as representative and reliable characteristics for diagnosing a person's Sasang Constitution (SC). However, the description of these features tends to depend on the interpretation and the opinion of the doctor that follows the SC approach. In this paper, we performed a facial feature analysis of SC types in an objective and quantitative manner. Here, site...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملIntroducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کاملAnthropometric Analysis of Face using Local Gaussian Distribution Fitting Applicable for Facial Surgery
Human facial plays a very important role in the human’s appearance. Many defects in the face affect the facial appearance, significantly. Facial plastic surgeries can correct the defects on the face. Analysis of facial color images is very important due to its numerous applications in facial surgeries. Different types of facial surgeries, such as Rhinoplasty, Otoplasty, Belpharoplasty and chin ...
متن کامل